ON CURVES OVER FINITE FIELDS by
نویسندگان
چکیده
— In these notes we present some basic results of the Theory of Curves over Finite Fields. Assuming a famous theorem of A. Weil, which bounds the number of solutions in a finite field (i.e., number of rational points) in terms of the genus and the cardinality of the finite field, we then prove several other related bounds (bounds of Serre, Ihara, Stohr-Voloch, etc.). We then treat Maximal Curves (classification and genus spectrum). Maximal curves are the curves attaining the upper bound of A. Weil. If the genus of the curve is large with respect to the cardinality of the finite field, Ihara noticed that Weil’s bound cannot be reached and he introduced then a quantity A(q) for the study of the asymptotics of curves over a fixed finite field. This leads to towers of curves and we devote special attention to the so-called recursive towers of curves. We present several examples of recursive towers with good asymptotic behaviour, some of them attaining the Drinfeld-Vladut bound. The connection with the asymptotics of linear codes is a celebrated result of TsfasmanVladut-Zink, which is obtained via Goppa’s construction of codes from algebraic curves over finite fields. Résumé (Courbes sur des corps finis). — Nous présentons des résultats élémentaires sur les courbes sur les corps finis et leurs points rationnels. Nous avons fait un effort pour donner une présentation aussi simple que possible, la rendant accessible aux non spécialistes. Parmi ces résultats se trouvent : le théorème de Weil (l’hypothèse de Riemann dans ce contexte), son amélioration donnée par Serre, la borne de Ihara sur le genre pour les courbes maximales, genre et classification des courbes maximales, théorie de Stohr-Voloch des ordres de Frobenius pour les courbes planes, constructions de courbes sur les corps finis ayant beaucoup de points rationnels, les formules explicites de Serre, étude asymptotique des courbes sur les corps finis et des codes correcteurs d’erreurs (la connexion entre elles est un célèbre théorème de Tsfasman-Vladut-Zink), tours récursives de courbes et certaines tours particulièrement intéressantes (atteignant la borne de Drinfeld-Vladut sur des corps finis de cardinal un carré ou atteignant la borne de Zink sur des corps finis de cardinal un cube). 2000 Mathematics Subject Classification. — 14H05, 11G20 , 14G05.
منابع مشابه
A note on superspecial and maximal curves
In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملIsomorphism classes of Doche-Icart-Kohel curves over finite fields
We give explicit formulas for the number of distinct elliptic curves over a finite field, up to isomorphism, in two families of curves introduced by C. Doche, T. Icart and D. R. Kohel.
متن کاملThe Profinite Grothendieck Conjecture for Closed Hyperbolic Curves over Number Fields
In [Tama], a proof of the Grothendieck Conjecture (reviewed below) was given for smooth affine hyperbolic curves over finite fields (and over number fields). The purpose of this paper is to show how one can derive the Grothendieck Conjecture for arbitrary (i.e., not necessarily affine) smooth hyperbolic curves over number fields from the results of [Tama] for affine hyperbolic curves over finit...
متن کاملAsymptotic properties of zeta functions over finite fields
In this paper we study asymptotic properties of families of zeta and L-functions over finite fields. We do it in the context of three main problems: the basic inequality, the Brauer–Siegel type results and the results on distribution of zeroes. We generalize to this abstract setting the results of Tsfasman, Vlăduţ and Lachaud, who studied similar problems for curves and (in some cases) for vari...
متن کاملIsomorphism classes of Edwards curves over finite fields
Edwards curves are an alternate model for elliptic curves, which have attracted notice in cryptography. We give exact formulas for the number of Fq-isomorphism classes of Edwards curves and twisted Edwards curves. This answers a question recently asked by R. Farashahi and I. Shparlinski.
متن کامل